BOB电子竞技:伺服系统有关问题解答

发布时间:2024-01-03 20:39:08 来源:bob体官网 作者:bob网站下载

  一、数控铣床,打开电源和系统,伺服电机嗡嗡响,响几分钟之后伺服电机会发热,调小刚性后不响了,但铣出来的圆不像圆,该怎样调?

  应该是几台驱动器设置的增益不同,造成电机在不同的转速下自激。可以把待测的驱动器与参考驱动器的参数设置成一致再试一下。惯量比看了吗?增益是一方面,但也不要忽略了惯量。

  二、伺服驱动器,通过调节三环PID控制伺服电机,噪音比较大,但电机并没有震动,载波频率是10KHZ,电流采样速度是0.1us一次,为什么?

  先看看是不是动平衡出了问题,这是电流声音,其次看电机轴承,最后是驱动器参数,多数是轴承松懈或坏。

  1、当定子与转子相擦时,会产生刺耳的“嚓嚓”碰擦声,这多是轴承有故障引起的。应检查轴承,损坏者更新。如果轴承未坏,而发现轴承走内圈或外圈,可镶套或更换轴承与端盖。

  2、电动机缺相运行,吼声特别大。可断电再合闸,看是否能再正常起动,若无法起动,可能有一相熔丝断路。开关及接触器触头一相未接通也会发生缺相。

  5、笼型转子导条断裂或绕线转子绕组接头断开时,有时高时低的“嗡嗡”声,转速也变慢,电流增大,应检查处理。另外有些电动机转子和定子的长度配合不好,如定子长度比转子长度长得太多,或端盖轴承孔磨损过大,转子产生轴向窜动,也会产生“嗡嗡”的声音。

  原因5:电机转向器表层氧化、烧蚀、油污凹凸不平、换向片松动 。处理:清洗换向器或焊牢换向片。

  电磁噪声首要是由气隙磁场效果于定子铁芯的径向重量所发生的。它经过磁轭向别传播,使定子铁芯发生振动变形。其次是气隙磁场的切向重量,它与电磁转矩相反,使铁芯齿部分变形振动。当径向电磁力波与定子的固有频率接近时,就会惹起共振,使振动与噪声大大加强,甚至危及电机的使用寿命。

  六、新买的电,就是电机和减速机连在一起的那种 SEW的,主要是靠PLC和变频器控制,使用的转速很低,大约在25赫兹左右,感觉噪音很大,机械上的主动链轮和被动链轮的角度没问题,电机底座固定的也很牢固,散热风扇和防护罩没有刮擦,爆闸也是松开的,但是一运转起来噪音非常的大,就好像小区里面变压器发出的声音,为什么?

  那就是变频器驱动电机所特有的电磁噪音(吱吱的),没有很好的方法消除掉,但能够大大减少一点,就是修改变频器参数:把那个载波频率加大一点,噪音就会小一点的。但是加大变频器的载波频率,会导致变频器发热。25赫兹左右低频原本很烦人,刮擦一般音频较高,底座固定的也很牢固要看什么底座,金属板声音会比较大,负载大声音会更大,用螺丝刀顶住耳朵仔细听听音源来自啥地方,要是安装没什么问题,电机声音大往往是轴承不良,新的应该不至于,可能原本就是这样的,运行正常就行。另外就是控制问题。

  异响是电机的负载过重,电机的转矩小于负载所需转矩,而电机的堵转转矩大于负载所需转矩。发热就是电机的电流过大(一般发热很正常),若是很烫,或者堵转时间过长很容易烧毁电机(电机退磁)。直白说就是小马拉大车很费力,为了拉动小马就更加的费劲拉车,所以会发热(增加电流),拉车很费劲(异响)。异响是因为伺服电机轴承坏了,发热是电流大,实质是伺服电机为客服电机轴震动而产生的异常大电流,估计电机坏了,需尽快处理,不然故障会扩大。

  伺服电机出现这样一种问题有多种原因,一是伺服电机编码器零位不准,也就是编码器零位漂移,二是驱动器刚性不足或参数有问题,三是伺服电机动力线接的可能有问题呀,伺服电机的动力线是不能搞错的,可调换几次看看。四是编码器安装问题或编码器自身有问题,需要认真检查,有同样的伺服电机和驱动器最好相互调换一下试试看。伺服电机有问题,最好找专业人士检修。系统与驱动器故障,电机本身故障;驱动器与实际进给系统的匹配未达到最佳值而引起的,通常只要通过驱动器的速度环增益与积分时间的调节即可进行消除,具体方法为:

  1)根据驱动模块及电动机规格,对驱动器的调节器板的S2进行正确的电流调节器设定。

  2)将速度调节器的积分时间Tn调节电位器(在驱动器正面),逆时针调至极限(Tn≈39ms)。

  3)将速度调节器的比例Kp调节电位器(在驱动器正面),调整至中间位置(Kp≈7~10)。

  4)在以上调整后,即可以消除伺服电动机的尖叫声,但此时动态特性较差,还须进行下一步调整。

  5)顺时针慢慢旋转积分时间Tn调节电位器,减小积分时间,直到电动机出现振荡声。

  电机扫堂就是电机的转子与定子绕组里的硅钢片发生摩擦,一般是轴承坏了,还有可能是轴承走外缘,端盖的轴承位置松动。也有可能是转子走内缘,转子上的轴承位置坏了。最小的一种可能是转子弯曲造成的。轴承磨损或者是轴承座松动会造成的转子偏心。

  电机轴上支承圈磨损严重、转子铁心位移,或因其他原因使定子铁心位移,造成电机锥形转子与定子间隙太小发生扫膛。电机严禁“扫膛”,当发生扫膛后,应拆下支承圈进行更换,调整定子转子锥面之间的间隙使之均匀,或送修。

  抖动是不正常的吧,可能是由于导轨不顺畅,或者电源不足。把功率调一下,调小点。

  1、 安川伺服在低刚性(1~4)负载应用时,惯量比显得非常重要,以同步带结构而论,刚性大约在1~2(甚至1以下),此时惯量比没有办法进行自动调谐,必须使伺服放大器置于非自动调谐状态;

  3、 此时的刚性在1~3之间,甚至可以设置到4;但是有时也有可能在1以下。

  4、 刚性:电机转子抵抗负载惯性的能力,也就是电机转子的自锁能力,刚性越低,电机转子越软弱无力,越容易引起低频振动,发生负载在到达指定位置后来回晃动。刚性和惯量比配合使用,如果刚性远远高于惯量比匹配的范围,那么电机将发生高频自激振荡,表现为电机发出高频刺耳的声响,这一切不良表现都是在伺服信号(SV-ON)ON并且连接负载的情况下。

  5、 发生定位到位后越程,而后自动退回的现象的原因:位置环增益设置的过大,主要在低刚性的负载时有此可能。

  I、 然后将SV-ON至于ON,如果没有振荡的声音,此时进行JOG运行,并且观察是否电机产生振荡;如果有振荡,必须减少Pn100数值,然后重复E、F重新设定转动惯量比;重新设定刚性;注意此时刚性应该是1甚至1以下;

  J、在刚性设定到1时没有振荡的情况下,逐步加快JOG速度,并且适当减少Pn305、Pn306(加减速时间)的设定值;

  K、在多次800rpm以上的JOG运行中没有振荡情况下进入定位控制调试;

  N、如果调试中发生到达位置后负载出现低频振荡现象,此时适当减少Pn102参数的设定值,调整至最佳定位状态;

  O、再将速度以100~180rpm的速度提高,同时观察伺服电机是否有振动现象,如果发生负载低频振荡,则适当减少Pn102的设定值,如果电机发生高频振荡(声音较尖锐)此时适当减少Pn100的设定值,也可以增加Pn101的数值;

  P、说明:Pn100 速度环增益 Pn101 速度环积分时间常数 Pn102 位置环增益Pn103 旋转惯量比 Pn401 转距时间常数。

  7、在定位控制中,为了使低刚性结构的负载能够减少机械损伤,因此可以在定位控制的两头加入一定的加减速时间,尤其是加速时间;通常视最高速度的高低,可以从0.5秒设定到2.5秒(指:0到最高速的时间)。

  B、电机通过减速装置(齿轮或减速机)和滚珠丝杆相连: 丝杆的节距×减速比(电机侧齿轮齿数除以丝杆处齿轮齿数)

  F、电机+减速机通过同步轮和同步带连接: 同步带齿距×同步带带轮的齿数×(电机侧同步轮的齿数/同步带侧带轮的齿数)×减速比; 共有3个同步轮,电机先由电机减速机出轴侧的同步轮传动至另外一个同步轮,再由同步轮传动到同步带直接连接的同步轮。

  A、电机轴侧的惯量需要在电机本身惯量的5~10倍内使用,如果电机轴侧的惯量超过电机本身惯量很大,那么电机需要输出很大的转距,加减速过程时间变长,响应变慢;

  B、电机如果通过减速机和负载相连,如果减速比为1/n ,那么减速机出轴的惯量为原电机轴侧惯量的(1/n)2

  E、当负载惯量大于10倍的电机惯量时,速度环和位置环增益由以下公式可以推算 Kv=40/(m+1) 7

  <=kp

  <=(kv/3)

  C、将刚性设定为1,然后调整速度环增益,由小慢慢变大,直到电机开始发生振荡,此时记录开始振荡的增益值,然后取50~80%作为使用值(具体视负载机械机构的刚性而论)

  D、位置环增益一般保持初始设定值不变,也可以向速度环增益一样增加,但是在惯量较大的负载时,一旦在停止时发生负载振动(负脉冲不能消除,偏差计数器不能清零)时,必须减少位置环增益;

  E、在减速、低速电机运行不匀时,将速度环积分时间慢慢变小,知道电机开始振动,此时记录开始振动的数值,并且将该数据加上500~1000,作为正式使用的数据。

  F、伺服ON时电机出现目视可见的低频(4~6/S)左右方向振动时(此时惯量此设定值很大),将位置环增益调整至10左右,并且按照C中所述进行重新调整;

  A、位置环增益: 决定偏差计数器中的滞留脉冲数量。数值越大,滞留脉冲数量越小,停止时的调整时间越短,响应越快,可以进行快速定位,但是当设定过大时,偏差计数器中产生滞留脉冲,停止时会有振动的感觉; 惯量比较大时,只能在速度环增益调整好以后才能调整该增益,否则会产生振动;

  B、位置环增益和滞留脉冲的关系:e=f / Kp 其中e是滞留脉冲数量;f是指令脉冲频率;Kp是位置环增益; 由此可以看出Kp越小,滞留脉冲数量越多,高速运行时误差增大;Kp过高时,e很小,在定位中容易使偏差计数器产生负脉冲数,有振动;

  C、速度环增益: 当惯量比变大时,控制系统的速度响应会下降,变得不稳定。一般会将速度环增益加大,但是当速度环增益过大时,在运行或停止时产生振动(电机发出异响),此时,必须将速度环增益设定在振动值的50~80%。

  D、速度积分时间常数: 提高速度响应使用;提高速度积分时间常数可以减少加减速时的超调;减少速度积分时间常数可以改善旋转不稳定。

  伺服电机为珠海运控的,当上方连杆没装上时,一切看起来正常;一旦连杆装上以后,电机就自己左右摇摆,参数设置半天也没整好。注:未接有减速器这个现象说明两个问题:

  在这种情况下,系统只能调的很软,也就是刚性要调低,反应速度要减慢。具体的方法是关闭积分,同时降低位置环增益。

  1、推荐增加一个减速机,这样负载折算到电机的惯量就大大降低,日本伺服通常要求负载/电机惯量比小于5:1。

  以上两个措施要同时使用才好,如果负载本身刚度低就没办法了。在这个情况下,即使电机不震动了,快速启停时负载也会震动。

  可以试一下用有加减速脉冲输出指令来做,突然停止引起负载的抖动是转动惯性与减速力矩矛盾的体现,能想办法减轻但不能彻底消除。最有效的办法是到定位点之前给一段时间逐渐减速。这个要从2方面来解决。根本的,伺服的性能与现场调试;PLC发脉冲。

  十四、用PLC发送脉冲控制伺服电机,当没有发送脉冲时,有时电机有微小的抖动,怎么办?

  十五、用程序步进电机速启动时,会有抖动声无法启动,用伺服电机能解决这类问题?

  跟程序关系不大,应是电机转动惯量不够导致,建议换大点的步进或者伺服,伺服可以过载。

  b.检查控制线附近是否存在干扰源,是否与附近的大电流动力电缆互相平行或相隔太近;

  b.滑轮或齿轮的咬合不良也会导致负载转矩变动,尝试空载运行,如果空载运行时正常则检查机械系统的结合部分是否有异常;

  c.确认负载惯量,力矩以及转速是否过大,尝试空载运行,如果空载运行正常,则减轻负载或更换更大容量的驱动器和电机。

  1、伺服电机的抖动鸣叫跟本身机械结构(如直流伺服电机经常出现的电刷故障)、速度环问题(速度环积分增益、速度环比例增益、加速度反馈增益等参数设置不当或伺服系统的补偿板和放大板故障)、负载惯量(导轨或丝杆出现问题)、电气(制动没打开,速度环反馈电压不稳)有关。

  2、电机不转时很小的偏移会被速度环的比例增益放大,速度反馈产生相反转矩使电机来回抖动。降低积分增益会使机床响应迟缓,刚性变坏。加速度反馈是利用电机速度反馈信号乘以加速度反馈增益(pa.2066)对转矩命令进行补偿实现对速度环振动控制。位置指令脉冲与反馈脉冲不相等时共同产生速度脉冲指令。A=F*Ks,F为指令脉冲频率;Ks是位置环增益;A为加速脉冲。Xe=F/Ks,Xe为位置偏差脉冲。因此增益大速度就大,惯性力就大;增益越大,偏差越小,越易产生振动。 先检查下制动是否打开。在FANUC系统中可以调节以下参数来消除由于参数设置不当引起的振动:pa.2021(负载惯量),pa.2044(加速度比例增益),pa.2066(加速度反馈增益)

  最近碰到过此类的问题,控制卡控制伺服,仔细观察X轴丝杠在来回的作圆周运动,不是很明白应该调整哪些参数来解决,MR-E的伺服,卡输出1000个脉冲,1个脉冲走10个u。

  来回调整速度环和位置环增益试试。我碰到这种情况是因为速度环增益太低,积分因子也比较低造成的。降低驱动器上的位置增益。 目前位置环增益是自动模式,而且最近是想增加位置环增益改善滞留脉冲的影响。那就增加速度环增益试试,不过可能更糟,改个大点儿的电机试试。使用伺服监控软件如何调好伺服的增益? 如何看曲线来分析系统的响应?如果参数调好了,在伺服快定位结束的时候会不会一定会发生超程,这时有微小的振动呢?2号参数的第四位是机械共振频率设置,尽量提高它,应该会有所改善,除非选型不合适,负载的转动惯量远远大于电机转子的转动惯量。一般振荡多是积分作用过强,调节时还可以适当加大位置环比例增益。

  (4)还有很大的可能是伺服控制的参数调节有点问题,比如位置增益,速度增益等配合不好

  安川伺服电机08A的,机床在运行时会抖动,有时会尖叫,试过F001调刚性,出厂时是6,现在改5,4都没用,机床用的新代的系统,系统里也改过刚性增益也没有什么大的变化。

  首先要确定是不是伺服的问题,如果确实是伺服的问题,那么刚性调节一般多少会起一点作用,如果效果实在不行,就用手动调整速度环,Pn110.0=2;Pn103=x%(x根据机器情况设定,如果不知道设定100,200试试也无妨);然后加大速度环增益Pn100(1-2000),或者减小微分时间PN101(15-51200)。如果还是不行,那就是上位系统的问题了。

  (1)先确定转动部分是不是真的存在问题。比如连轴器,导轨等使伺服电机转动受力变动过大致电机抖动。

  (2)转动没问题就是参数问题,把速度环参数,位置环参数调小。调整(从小到大)

  工作台上的伺服电机,在调试的时候曲线很正常,一旦带了负载,运动的时候就会在运动方向上前后抖动,出料的时候就会看到料块上切割面有均匀锯齿。

  三洋的伺服驱动器,全闭环,调整了电流环参数,电流前馈,P参数和I参数,负载惯量比调到400左右,用联轴器连接的丝杆,打激光干涉仪丝杆运动方向是测过的,不带载的情况下系统分析曲线赫兹有共振,用滤波器滤除了,带负载情况下负载惯量比越大产生的锯齿越密集,降低刚性可以使情况好转但是不能够达到设备所要求的性能。

  (3)“不带载的情况下系统分析曲线赫兹有共振”,带负载能否测一下系统是否仍有扭振?

  电机的加速度减速度都在1万以上,电机有发烫现象(其他几台正常的都基本没温度),电机是垂直安装,下降距离很短,停止时跳动很厉害,像有弹性。

  用伺服电机带动转盘转动,每转180度停一次,但是停下后转盘老是颤动,好像伺服电机的轴锁的不是很牢固,怎么办呢?

  机械部分拆开后并无异常,连接轴也没有摩擦的痕迹。拆下电机以后让其空载转动时无任何异常。但是一旦与机械部分连接后便会出现强烈抖动和异常声音。

  机械共振还在于丝杆等机械部分与伺服里面的频率合上,产生的机械共振现像,一般的伺服控制器里面有设置屏蔽相应的共振频率。

  还有就是伺服控制器里面的PID值也会引起机械共振,你可以把PID值先自动演算一下,如果还是异常工作可以手动修改至伺服控制器正常,这两点通常能解决伺服引起的共振现象。

  1.惯量比设定是否得当,有可能电机惯量选型偏小2.增益设定是不是过高导致

  Diodes公司 (Diodes Incorporated) 推出电机驱动器AM4964,通过使风扇、排气扇和抽风机的速度同时受制于脉冲宽度调制及热敏电阻的输入信号,为个人电脑、服务器、工业仪器提供更符合客户的真实需求的散热系统。 单相全波的无刷直流电机驱动器AM4964在12V的电源下提供高达1A的峰值电机电流。电机速度在低温与高温设定值之间自动调整,以回应环境和温度和脉冲宽度调制输入信号。 新器件仅利用三个外部电阻器,就可轻易调节设定值及最高脉冲宽度调制输出。它为差动无缓冲霍尔传感器提供转速输出 (FG) 或运转状态输出 (RD) 及偏置输出;以及为三或四引脚的霍尔传感器提供专用输入,实现转子位置检测。 高度集成

  电机的应用十分普遍,遍及人们工作及生活的所有的领域,如打印机、复印机、传真机、投影仪、电冰箱、洗衣机、空调、燃气灶、照相机、ATM机、电动缝纫机、保安摄像机、自动售货机、热水供应系统、园林灌溉系统及工业自动化等。 在节能越来越受重视的当今,高能效的驱动电机显得很重要。从类型上看,电机包括交流电机、直流有刷电机、直流无刷电机、永磁同步电机、伺服电机和步进电机等。其中,步进电机采用脉冲工作,也称作数字电机或脉冲电机。步进电机的旋转角与脉冲数量成正比,速度则与脉冲频率成正比,可经过控制脉冲数量来精确控制步进电机的旋转,使其非常适合于定位应用。本文将探讨步进电机驱动的常见挑战,并重点介绍安森美半导体针对办公自动化设备应用的高能效步进

  方案 /

  CPLD(Complex Programmable Logic Device)是一种复杂的用户可编程逻辑器件,由于采用连续连接结构。这种结构易于预测延时,从而电路仿真更加准确。CPLD是标准的大规模集成电路产品,可用在所有数字逻辑系统的设计。近年来,由于使用先进的集成工艺和大批量生产,CPLD器件成本不断下降,集成密度、速度和性能大幅度提升,一个芯片就能轻松实现一个复杂的数字电路系统;再加上使用起来更便捷的开发工具,使用CPLD器件可以极大地缩短产品研究开发周期,给设计、修改带来很大方便 。本文以 ALTERA公司的MAX7000系列为例,实现MCS51单片机与PC104 ISA总线的并行通信。采用这种通信方式,数据传输准确、高速,在12 M

  电路驱动一只大功率白光 LED (WLED),当温度过高以及热敏电阻发生开路或短路故障时,将关闭LED。如果工作在极限工作时候的温度范围以外,任何IC的寿命都会缩短。当芯片的结温超过特定值后,就会彻底损坏。Philips Lumileds LUXEON大功率LED模组由于是在热增强型基底上制造的,因而发热会少一些。这种基底材料改善了热性能,允许持续工作在大电流下,从而满足高亮度照明的要求。可是对于象照相机闪光灯这样的应用,为避免持续工作时的功耗损坏器件,则需要出示额外的热保护功能。 图1电路包括一款适合于照相机闪光灯应用的电荷泵调节器(IC1),该器件可以为最多8 只白光LED (WLED)提供调节电流。并联所有8路驱动器,

  1 FAN7387 的结构、特点及其功能     1. 1 FAN7387的基本结构和引脚功能     FAN7387采用工作时候的温度为- 40 到125 并符合欧盟ROHS指令的8引脚SOP和D IP封装,引脚排列如图1所示。 图1 FAN7387顶视图     FAN7387芯片集成了电源电路、镇流器控制电路和高端与低端(外部MOSFET ) 栅极驱动器,如图2所示。     FAN7387各个引脚说明见表1。   图2 FAN7387芯片电路组成框图 表1 FAN7387引脚说明     1. 2 主要特征和功能。     FAN7387的主要特征和功能如下所述。

  目前,已能在1.2V 65nm CMOS技术的基础上实现8Vpp和脉冲宽度调制射频高压/大功率驱动器。在0.9到3.6GHz的工作频率范围内,该芯片在9V的工作电压下可向50Ω负载提供8.04Vpp的最大输出摆幅。这使得CMOS驱动器能够直接连接并驱动LDMOS和GaN等功率晶体管。该驱动器的最大导通电阻为4.6Ω。2.4GHz时所测量的占空比控制范围为30.7%到71.5%.利用新型薄氧化层漏极延伸MOS器件,该驱动器可实现可靠的高压操作,而这一新型器件通过CMOS技术实现时无需额外的费用。 技术背景 现代无线手持通信无线电(包括射频(RF)功率放大器(PA)在内)均是在深亚微米CMOS中得以实现。不过,在

  实现下一代无线系统 /

  LED光源为照明产业的大势所趋,惟整体发光效率仍未达市场要求,其中,散热缺陷为首要解决的棘手课题,目前产业界已发展出利用LED驱动器的主动式热能管理,其藉由内建热能回折功能,以改善LED在使用年数的限制与散热的发展窒碍。 在2007年,美国能源部能源情报署(EIA)发表一篇报告,在该篇报告中特别提到美国(在商业区与住宅)的照明设备总共约消耗5,260亿千瓦小时的电能。若参考2008年EIA的报告,可发现美国一座核能发电厂能产生124亿千瓦小时的电能。因此,透过简单的计算可知,美国光在照明设备的使用即须耗掉四十二座核能发电厂的电能。随着人口数量的逐渐成长,照明工业必须寻找新型态的照明光源,以提高照明效率与降低能量消耗。 在照明工业上,发光

  的主动式热能管理介绍 /

  光耦合驱动器TLP250的驱动电路如图1所示。这中间还包括光耦合器、前级放大器、触发器、功率放大器等部分。 图1 光耦合驱动器的驱动电路 1)光耦合器 光耦合器通常简称为光耦,它是由发光二极管和接收二极管组成。当发光二极管通过毫安级的电流时,接收二极管能产生出微安级的电流和不大的电压。光耦的隔离耐压通常大于1500 V,分布电容小,干扰也很小。 2)前级放大器 前级放大器是一个运算放大器(比较器),放大倍数大,输出脉冲沿较陡。 3)触发器 触发器能使输出电压波形的上升沿和下降沿很陡,能使功放级脉冲的上升时间和下降时间小于0.5 PS,“拉”、“灌”电流的峰值能够达到安培级

  解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!

  参赛冲击【万元大奖】啦|2023 DigiKey“智造万物,快乐不停”创意大赛

  变频器是一种应用现代电力电子技术、计算机控制技术和通信技术,将电动机工作电源固定的频率变换为连续可调的频率,从而控制交流电动机运转 ...

  今天,米尔电子联合战略合作伙伴全志科技,隆重发布国产第一款T527核心板及开发板。基于全志T527高性能国产处理器,可选AI功能MPU,配备八 ...

  翻开市面大部分编程教程,最早能够接触到的条件语句基本都是if-else。作为高级编程语言都有的必备功能,if-else在嵌入式编程过程中几乎是必 ...

  硕盟SM-A44是一款USB3 0转RJ45千兆网口转换器。这是一种高性能和低开销的解决方案。可以让您的笔记本电脑可以通过USB接口连接千兆端口快速 ...

  对于常用笔记本、尤其是苹果电脑干活的打工人而言,这辈子基本是离不开扩展坞了。毕竟如今的笔记本越做越薄,接口也越做越少,日常办公一个 ...

  音频电路原理(双音频解码电子电路/TDA2822双声道功放电路/音频放大处理电路)

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科

上一篇:伺服控制管理系统的系统分类 下一篇:通过CANopen转Modbus TCP网关的伺服系统